Closed Loop Interval Ontology
     CLOSED LOOP INTERVAL ONTOLOGY
       The Digital Integration of Conceptual Form
TzimTzum/Kaballah | Loop definition | Home | ORIGIN    
Please sign in
or register

Email *

Password *

Home | About

Select display
Show public menu
Show all theme groups
Show all themes
Show all terms
Order results by
Alphabetical
Most recently edited
Progress level
Placeholder
Note
Sketch
Draft
Polished


Searches selected display

The Many Forms of Many/One
Universal conceptual form

Invocation
Aligning the vision

Project under development
Evolving and coalescing

Guiding motivation
Why we do this

A comprehensive vision
Ethics / governance / science

Cybernetic democracy
Homeostatic governance

Collective discernment
Idealized democracy

Objectives and strategy
Reconciliation and integration

Reconciliation of perspectives
Holistic view on alternatives

What is a concept?
Definitions and alternatives

Theories of concepts
Compare alternatives

What is truth?
How do we know?

Semantics
How meaning is created

Synthetic dimensionality
Foundational recursive definition

Universal hierarchy
Spectrum of levels

A universal foundation
The closed loop ensemble contains
all primary definitions

Set
Dimensions of set theory

Numbers
What is a number?

Venn diagrams
Topology of sets

Objects in Boolean algebra
How are they constructed?

Core vocabulary
Primary terms

Core terms on the strip
Closed Loop framework

Graphics
Hierarchical models

Digital geometry
Euclid in digital space

The dimensional construction
of abstract objects
Foundational method

The digital integration
of conceptual form
Compositional semantics

Closed loop interval ontology
How it works

Cognitive science
The integrated science of mind

Equality
What does it mean?

Formal systematic definitions
Core terms

Data structures
Constructive elements
and building blocks

Compactification
Preserving data under transformation

Steady-state cosmology
In the beginning

Semantic ontology
Domain and universal

Foundational ontology
A design proposal

Coordinate systems
Mapping the grid

Articles
From other sources

Arithmetic
Foundational computation

Plato's republic and
homeostatic democracy
Perfecting political balance

Branching computational architecture
Simultaneity or sequence

Abstract math and HTML
Concrete symbolic representation

All knowledge as conceptual
Science, philosophy and math
are defined in concepts

Does the Closed Loop
have an origin?
Emerging from a point


Objects in Boolean algebra
How are they constructed?

In mathematics and mathematical logic, Boolean algebra is the branch of algebra in which the values of the variables are the truth values true and false, usually denoted 1 and 0, respectively. Instead of elementary algebra, where the values of the variables are numbers and the prime operations are addition and multiplication, the main operations of Boolean algebra are the conjunction (and) denoted as ?, the disjunction (or) denoted as ?, and the negation (not) denoted as ¬. It is thus a formalism for describing logical operations, in the same way that elementary algebra describes numerical operations.

Boolean algebra was introduced by George Boole in his first book The Mathematical Analysis of Logic (1847), and set forth more fully in his An Investigation of the Laws of Thought (1854). According to Huntington, the term "Boolean algebra" was first suggested by Sheffer in 1913, although Charles Sanders Peirce gave the title "A Boolean Algebra with One Constant" to the first chapter of his "The Simplest Mathematics" in 1880. Boolean algebra has been fundamental in the development of digital electronics, and is provided for in all modern programming languages. It is also used in set theory and statistics.

https://en.wikipedia.org/wiki/Boolean_algebra_(structure)

Boolean values

Boolean values
Placeholder | Back

In Boolean Algebra, the values of the variables are true and false (usually denoted 1 and 0).

So, the structure of something that is true or false is some kind of proposition -- or in a programming context, a condition that is true -- is is the case at the moment -- IF x=20, then y -- or something like that

Thu, Mar 25, 2021

Reference
In mathematics and mathematical logic, Boolean algebra is the branch of algebra in which the values of the variables are the truth values true and false, usually denoted 1 and 0, respectively.[1] Instead of elementary algebra, where the values of the variables are numbers and the prime operations are addition and multiplication, the main operations of Boolean algebra are the conjunction (and) denoted as ?, the disjunction (or) denoted as ?, and the negation (not) denoted as ¬. It is thus a formalism for describing logical operations, in the same way that elementary algebra describes numerical operations.

Boolean algebra was introduced by George Boole in his first book The Mathematical Analysis of Logic (1847), and set forth more fully in his An Investigation of the Laws of Thought (1854).[2] According to Huntington, the term "Boolean algebra" was first suggested by Sheffer in 1913,[3] although Charles Sanders Peirce gave the title "A Boolean Algebra with One Constant" to the first chapter of his "The Simplest Mathematics" in 1880.[4] Boolean algebra has been fundamental in the development of digital electronics, and is provided for in all modern programming languages. It is also used in set theory and statistics.[5]

URL
https://en.wikipedia.org/wiki/Boolean_algebra